Search results
Results from the WOW.Com Content Network
The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime.
This is an implicit method. In this method, in two-dimensional case, Maxwell equations are computed in two steps, whereas in three-dimensional case Maxwell equations are divided into three spatial coordinate directions. Stability and dispersion analysis of the three-dimensional LOD-FDTD method have been discussed in detail. [21] [22]
Maxwell introduced the term D, specific capacity of electric induction, in a form different from the modern and familiar notations. [3] It was Oliver Heaviside who reformulated the complicated Maxwell's equations to the modern form. It wasn't until 1884 that Heaviside, concurrently with Willard Gibbs and Heinrich Hertz, grouped the equations ...
where the square brackets are meant to indicate that the time should be evaluated at the retarded time. Of course, since the above equations are simply the solution to an inhomogeneous differential equation, any solution to the homogeneous equation can be added to these to satisfy the boundary conditions. These homogeneous solutions in general ...