Search results
Results from the WOW.Com Content Network
Hydroformylation of an alkene (R 1 to R 3 organyl groups (i. e. alkyl-or aryl group) or hydrogen). In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R 2 C=CR 2).
a) Doubly bridging and b) terminal oxo ligands. A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O 2–, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands. Oxo ligands stabilize high oxidation states of a metal. [1]
This pterin asymmetry may be the result of the trans-effect of the oxo-group weakening the S2-Mo bond, which is located directly opposite the oxo-group. [ 7 ] In contrast, the structure of the fully reduced Mo IV form of the active site showed S1 and S2 P-pterin and S1 Q-pterin maintained full coordination, however the S2 of the Q-pterin ...
Long chain oxo-alcohols are often prepared using alpha-olefins from the Shell higher olefin process, to give secondary alcohols such as isodecyl alcohol. [2] Key oxo alcohols that are sold in commerce include the following: 2-Methyl-2-butanol (2M2B) n-Butanol; 2-Ethylhexanol; 2-Propylheptanol; Isononyl alcohol; Isodecyl alcohol
In organic chemistry, the oxy-Cope rearrangement is a chemical reaction.It involves reorganization of the skeleton of certain unsaturated alcohols. It is a variation of the Cope rearrangement in which 1,5-dien-3-ols are converted to unsaturated carbonyl compounds by a mechanism typical for such a [3,3]-sigmatropic rearrangement.
The phosphotungstate anion, an example of a polyoxometalate. In chemistry, a polyoxometalate (abbreviated POM) is a polyatomic ion, usually an anion, that consists of three or more transition metal oxyanions linked together by shared oxygen atoms to form closed 3-dimensional frameworks.
An oxo-Diels–Alder reaction (also called an oxa-Diels–Alder reaction) is an organic reaction and a variation of the Diels–Alder reaction in which a suitable diene reacts with an aldehyde to form a dihydropyran ring. This reaction is of some importance to synthetic organic chemistry.
This mechanism was challenged by Zhao et al., [20] who postulated a hydrogen bonding network with Asp-99 hydrogen bonding to Tyr-14, which in turn forms a hydrogen bond to O-3. More recently, the Herschlag group utilized unnatural amino acid incorporation to assay the importance of Tyr-14 to KSI catalysis. [ 21 ]