Search results
Results from the WOW.Com Content Network
The Rössler attractor Rössler attractor as a stereogram with =, =, = The Rössler attractor (/ ˈ r ɒ s l ər /) is the attractor for the Rössler system, a system of three non-linear ordinary differential equations originally studied by Otto Rössler in the 1970s.
The phase space is the horizontal complex plane; the vertical axis measures the frequency with which points in the complex plane are visited. The point in the complex plane directly below the peak frequency is the fixed point attractor. A fixed point of a function or transformation is a point that is mapped to itself by the function or ...
The Hénon attractor is a fractal, smooth in one direction and a Cantor set in another. Numerical estimates yield a correlation dimension of 1.21 ± 0.01 or 1.25 ± 0.02 [2] (depending on the dimension of the embedding space) and a Box Counting dimension of 1.261 ± 0.003 [3] for the attractor of the classical map.
By comparison, based on the concept of attractor coexistence within the generalized Lorenz model [26] and the original Lorenz model ([36] [37]), Shen and his co-authors [35] [38] proposed a revised view that “weather possesses both chaos and order with distinct predictability”. The revised view, which is a build-up of the conventional view ...
Rössler attractor reconstructed by Takens' theorem, using different delay lengths. Orbits around the attractor have a period between 5.2 and 6.2. In the study of dynamical systems, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of that system.
The location of the Great Attractor is shown following the long blue arrow at bottom right. Hubble Space Telescope image showing part of the Norma cluster, including ESO 137-002 The Great Attractor is a region of gravitational attraction in intergalactic space and the apparent central gravitational point of the Laniakea Supercluster of galaxies ...
The frequency response of this oscillator describes the amplitude of steady state response of the equation (i.e. ()) at a given frequency of excitation . For a linear oscillator with β = 0 , {\displaystyle \beta =0,} the frequency response is also linear.
The notion of a hidden attractor has become a catalyst for the discovery of hidden attractors in many applied dynamical models. [1] [9] [10] In general, the problem with hidden attractors is that there are no general straightforward methods to trace or predict such states for the system’s dynamics (see, e.g. [11]).