Search results
Results from the WOW.Com Content Network
Space has fascinated humanity for centuries – from the mystery of the stars to the groundbreaking discoveries that push the boundaries of our understanding.
The geocentric model was eventually replaced by the heliocentric model. Copernican heliocentrism could remove Ptolemy's epicycles because the retrograde motion could be seen to be the result of the combination of the movements and speeds of Earth and planets. Copernicus felt strongly that equants were a violation of Aristotelian purity, and ...
In Greek antiquity the ideas of celestial spheres and rings first appeared in the cosmology of Anaximander in the early 6th century BC. [7] In his cosmology both the Sun and Moon are circular open vents in tubular rings of fire enclosed in tubes of condensed air; these rings constitute the rims of rotating chariot-like wheels pivoting on the Earth at their centre.
Ptolemy's model of astronomy was used as a technical method that could answer questions regarding astrology and predicting planets positions for almost 1,500 years, even though the equant and eccentric were regarded by many later astronomers as violations of pure Aristotelian physics which presumed all motion to be centered on the Earth. It has ...
An edition in Latin of the Almagestum in 1515. The Almagest (/ ˈ æ l m ə dʒ ɛ s t / AL-mə-jest) is a 2nd-century mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy (c. AD 100 – c. 170) in Koine Greek. [1]
Ptolemy's Almagest, although a brilliant treatise on theoretical astronomy combined with a practical handbook for computation, nevertheless includes compromises to reconcile discordant observations with a geocentric model. Modern theoretical astronomy is usually assumed to have begun with the work of Johannes Kepler (1571–1630), particularly ...
The Ptolemaic system of celestial motion as depicted in the Harmonia Macrocosmica (1661). Science in classical antiquity encompasses inquiries into the workings of the world or universe aimed at both practical goals (e.g., establishing a reliable calendar or determining how to cure a variety of illnesses) as well as more abstract investigations belonging to natural philosophy.
The triquetrum (derived from the Latin tri-["three"] and quetrum ["cornered"]) was the medieval name for an ancient astronomical instrument first described by Ptolemy (c. 90 – c. 168) in the Almagest (V. 12). Also known as Parallactic Rulers, it was used for determining altitudes of heavenly bodies.