enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m 3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (1.36 × 10 8 M ☉ ), its physical radius would be overtaken by its ...

  3. Mass concentration (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Mass_concentration_(chemistry)

    In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.

  4. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    ^ Volume V derived from the radius using =, assuming sphericity. ^ Density derived from the mass divided by the volume. ^ Surface gravity derived from the mass m, the gravitational constant G and the radius r: Gm/r 2.

  5. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases. Dividing one extensive property by another extensive property gives an intensive property—for example: mass (extensive) divided by volume (extensive) gives density (intensive). [9]

  6. Number density - Wikipedia

    en.wikipedia.org/wiki/Number_density

    Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...

  7. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...

  8. Jeans instability - Wikipedia

    en.wikipedia.org/wiki/Jeans_instability

    The formula for Jeans length is: = /, where is the Boltzmann constant, is the temperature of the cloud, is the mean molecular weight of the particles, is the gravitational constant, and is the cloud's mass density (i.e. the cloud's mass divided by the cloud's volume).

  9. Wigner–Seitz radius - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_radius

    The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...