Search results
Results from the WOW.Com Content Network
Near thermodynamic equilibrium, the emitted radiation is closely described by Planck's law and because of its dependence on temperature, Planck radiation is said to be thermal radiation, such that the higher the temperature of a body the more radiation it emits at every wavelength. Planck radiation has a maximum intensity at a wavelength that ...
Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...
Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...
The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.
Then, at each wavelength, for thermodynamic equilibrium in an enclosure, opaque to heat rays, with walls that absorb some radiation at every wavelength: For an arbitrary body radiating and emitting thermal radiation, the ratio E / A between the emissive spectral radiance, E , and the dimensionless absorptive ratio, A , is one and the same for ...
This is sometimes also confusingly called "intensity". Spectral radiosity: J e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m −2 ⋅nm −1. This is sometimes also confusingly called "spectral intensity". J e,λ [nb 4]
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, ...
Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.