Search results
Results from the WOW.Com Content Network
Fuzzy differential equation are general concept of ordinary differential equation in mathematics defined as differential inclusion for non-uniform upper hemicontinuity convex set with compactness in fuzzy set. [1] [2] [3] / = (, (),), for all [,].
Bart Andrew Kosko (born February 7, 1960) is an American writer and professor of electrical engineering and law at the University of Southern California (USC). He is a researcher and popularizer of fuzzy logic, neural networks, and noise, and the author of several trade books and textbooks on these and related subjects of machine intelligence.
Fuzzy mathematics is the branch of mathematics including fuzzy set theory and fuzzy logic that deals with partial inclusion of elements in a set on a spectrum, as opposed to simple binary "yes" or "no" (0 or 1) inclusion. It started in 1965 after the publication of Lotfi Asker Zadeh's seminal work Fuzzy sets. [1]
Fuzzy logic is an important concept in medical decision making. Since medical and healthcare data can be subjective or fuzzy, applications in this domain have a great potential to benefit a lot by using fuzzy-logic-based approaches. Fuzzy logic can be used in many different aspects within the medical decision making framework.
A fuzzy control system is a control system based on fuzzy logic – a mathematical system that analyzes analog input values in terms of logical variables that take on continuous values between 0 and 1, in contrast to classical or digital logic, which operates on discrete values of either 1 or 0 (true or false, respectively).
A systematic study of particular t-norm fuzzy logics and their classes began with Hájek's (1998) monograph Metamathematics of Fuzzy Logic, which presented the notion of the logic of a continuous t-norm, the logics of the three basic continuous t-norms (Ćukasiewicz, Gödel, and product), and the 'basic' fuzzy logic BL of all continuous t-norms ...
According to David Salsburg, the algorithms used in kernel regression were independently developed and used in fuzzy systems: "Coming up with almost exactly the same computer algorithm, fuzzy systems and kernel density-based regressions appear to have been developed completely independently of one another."
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.