Search results
Results from the WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
The traditional ld (Unix linker) requires that its library inputs be sorted in topological order, since it processes files in a single pass. This applies both to static libraries ( *.a ) and dynamic libraries ( *.so ), and in the case of static libraries preferably for the individual object files contained within.
The simplest algorithm to find a topological sort is frequently used and is known as list scheduling. Conceptually, it repeatedly selects a source of the dependency graph, appends it to the current instruction schedule and removes it from the graph. This may cause other vertices to be sources, which will then also be considered for scheduling.
Therefore, the order in which the strongly connected components are identified constitutes a reverse topological sort of the DAG formed by the strongly connected components. [7] Donald Knuth described Tarjan's SCC algorithm as one of his favorite implementations in the book The Stanford GraphBase. [8] He also wrote: [9]
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
العربية; বাংলা; Čeština; Dansk; الدارجة; Deutsch; Eesti; Ελληνικά; Español; Esperanto; فارسی; Français; 한국어; Հայերեն
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
In the field of computer science, a pre-topological order or pre-topological ordering of a directed graph is a linear ordering of its vertices such that if there is a directed path from vertex u to vertex v and v comes before u in the ordering, then there is also a directed path from vertex v to vertex u. [1] [2]