Search results
Results from the WOW.Com Content Network
Chlorine and oxygen can bond in a number of ways: chlorine monoxide radical, ClO•, chlorine (II) oxide radical; chloroperoxyl radical, ClOO•, chlorine (II) peroxide radical; chlorine dioxide, ClO 2, chlorine (IV) oxide; chlorine trioxide radical, ClO 3 •, chlorine (VI) oxide radical; chlorine tetroxide radical, ClO 4 •, chlorine (VII ...
Photochlorination is a chlorination reaction that is initiated by light. Usually a C-H bond is converted to a C-Cl bond. Photochlorination is carried out on an industrial scale. The process is exothermic and proceeds as a chain reaction initiated by the homolytic cleavage of molecular chlorine into chlorine radicals by ultraviolet radiation ...
In the laboratory BCl 3 can be prepared by treating with AlCl 3 with BF 3, a halide exchange reaction. [4] BCl 3 is a trigonal planar molecule like the other boron trihalides. The B-Cl bond length is 175 pm. A degree of π-bonding has been proposed to explain the short B− Cl distance, although there is some debate as to its extent. [4]
Evaporation under reduced pressure allows it to be concentrated further to about 40%, but then it decomposes to perchloric acid, chlorine, oxygen, water, and chlorine dioxide. Its most important salt is sodium chlorate, mostly used to make chlorine dioxide to bleach paper pulp. The decomposition of chlorate to chloride and oxygen is a common ...
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Chlorine monoxide is a chemical radical with the chemical formula ClO •. It plays an important role in the process of ozone depletion. In the stratosphere, chlorine atoms react with ozone molecules to form chlorine monoxide and oxygen. Cl • + O 3 → ClO • + O 2. This reaction causes the depletion of the ozone layer. [1]
Because this reaction is highly exothermic (238 kJ/mol), the temperature is monitored, to guard against thermal degradation of the catalyst. The reaction is as follows: CH 2 =CH 2 + 2 CuCl 2 → 2 CuCl + ClH 2 C-CH 2 Cl. The copper(II) chloride is regenerated by sequential reactions of the cuprous chloride with oxygen and then hydrogen chloride:
The structure of dichlorine monoxide is similar to that of water and hypochlorous acid, with the molecule adopting a bent molecular geometry (due to the lone pairs on the oxygen atom) and resulting in C 2V molecular symmetry. The bond angle is slightly larger than normal, likely due to steric repulsion between the bulky chlorine atoms.