Search results
Results from the WOW.Com Content Network
Aluminum honeycomb structure Honeycomb structure in nature. Honeycomb structures are natural or man-made structures that have the geometry of a honeycomb to allow the minimization of the amount of used material to reach minimal weight and minimal material cost. The geometry of honeycomb structures can vary widely but the common feature of all ...
A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform. However, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb.
Elongated alternated cubic honeycomb; Hexagonal prismatic honeycomb; Triangular prismatic honeycomb; Triangular-hexagonal prismatic honeycomb; Truncated hexagonal prismatic honeycomb; Truncated square prismatic honeycomb; Rhombitriangular-hexagonal prismatic honeycomb; Omnitruncated triangular-hexagonal prismatic honeycomb
The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t 0,2,3 {6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge.
A cell end composed of two hexagons and two smaller rhombi would actually be .035% (or about one part per 2850) more efficient. This difference is too minute to measure on an actual honeycomb, and irrelevant to the hive economy in terms of efficient use of wax, considering wild comb varies considerably from any mathematical notion of "ideal ...
In general, a honeycomb in n dimensions is an infinite example of a polytope in n + 1 dimensions. Tilings of the plane and close-packed space-fillings of polyhedra are examples of honeycombs in two and three dimensions respectively. A line divided into infinitely many finite segments is an example of an apeirogon.
In the geometry of hyperbolic 3-space, the order-7-3 hexagonal honeycomb (or 6,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle , each of which has a limiting circle on the ideal sphere.