enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kriging - Wikipedia

    en.wikipedia.org/wiki/Kriging

    In this case, kriging is used as a metamodeling tool, i.e. a black-box model built over a designed set of computer experiments. In many practical engineering problems, such as the design of a metal forming process, a single FEM simulation might be several hours or even a few days long.

  3. Metamodeling - Wikipedia

    en.wikipedia.org/wiki/Metamodeling

    Various types of metamodels include polynomial equations, neural networks, Kriging, etc. "Metamodeling" is the construction of a collection of "concepts" (things, terms, etc.) within a certain domain. Metamodeling typically involves studying the output and input relationships and then fitting the right metamodels to represent that behavior.

  4. Gradient-enhanced kriging - Wikipedia

    en.wikipedia.org/wiki/Gradient-enhanced_kriging

    Gradient-enhanced kriging (GEK) is a surrogate modeling technique used in engineering. A surrogate model (alternatively known as a metamodel , response surface or emulator) is a prediction of the output of an expensive computer code. [ 1 ]

  5. Gillespie algorithm - Wikipedia

    en.wikipedia.org/wiki/Gillespie_algorithm

    In contrast, the Gillespie algorithm allows a discrete and stochastic simulation of a system with few reactants because every reaction is explicitly simulated. A trajectory corresponding to a single Gillespie simulation represents an exact sample from the probability mass function that is the solution of the master equation.

  6. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.

  7. Simulation-based optimization - Wikipedia

    en.wikipedia.org/wiki/Simulation-based_optimization

    Simulation-based optimization (also known as simply simulation optimization) integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective ...

  8. Surrogate model - Wikipedia

    en.wikipedia.org/wiki/Surrogate_model

    Surrogate models are constructed using a data-driven, bottom-up approach. The exact, inner working of the simulation code is not assumed to be known (or even understood), relying solely on the input-output behavior. A model is constructed based on modeling the response of the simulator to a limited number of intelligently chosen data points.

  9. Polynomial chaos - Wikipedia

    en.wikipedia.org/wiki/Polynomial_chaos

    This is popularly known as the generalized polynomial chaos (gPC) framework. The gPC framework has been applied to applications including stochastic fluid dynamics, stochastic finite elements, solid mechanics, nonlinear estimation, the evaluation of finite word-length effects in non-linear fixed-point digital systems and probabilistic robust ...