Search results
Results from the WOW.Com Content Network
Ductility is a critical mechanical performance indicator, particularly in applications that require materials to bend, stretch, or deform in other ways without breaking. The extent of ductility can be quantitatively assessed using the percent elongation at break, given by the equation:
Ductility is a material property that can be expressed in a variety of ways. Mathematically, it is commonly expressed as a total quantity of elongation or a total quantity of the change in cross sectional area of a specific rock until macroscopic brittle behavior, such as fracturing, is observed.
Brittle fracture in glass Brittle fracture in cast iron tensile testpieces. A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied ...
Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc. Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend ...
These mechanisms can overlap in the brittle-ductile settings. Deformation mechanisms are commonly characterized as brittle, ductile, and brittle-ductile. The driving mechanism responsible is an interplay between internal (e.g. composition, grain size and lattice-preferred orientation) and external (e.g. temperature and fluid pressure) factors.
One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. [2] Toughness requires a balance of strength and ductility. [1]
Recent studies show typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains at room temperature and sub-micrometer scales (<500 nm). [62] An application was the use of low-friction Al–Cu–Fe–Cr quasicrystals [63] as a coating for frying pans.
Temperature produces a ductility trough and a ductile to brittle transition behaviour in the solid metal. The temperature range of the trough as well as the transition temperature are altered by the composition of the liquid and solid metals, the structure of the solid metal and other experimental parameters.