enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is

  4. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors.

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    It thus follows linear-algebraically that the Ricci tensor is completely determined by knowing the quantity ⁡ (,) for all vectors of unit length. This function on the set of unit tangent vectors is often also called the Ricci curvature , since knowing it is equivalent to knowing the Ricci curvature tensor.

  7. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    While much of the notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays. A tensor may be expressed as a linear sum of the tensor product of vector and covector basis ...

  8. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The total derivative is a linear combination of linear functionals and hence is itself a linear functional. The evaluation d f a ( h ) {\displaystyle df_{a}(h)} measures how much f {\displaystyle f} points in the direction determined by h {\displaystyle h} at a {\displaystyle a} , and this direction is the gradient .

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector.