Search results
Results from the WOW.Com Content Network
Miscibility (/ ˌ m ɪ s ɪ ˈ b ɪ l ɪ t i /) is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically equivalent to the common term "mixable").
The word upper indicates that the UCST is an upper bound to a temperature range of partial miscibility, or miscibility for certain compositions only. For example, hexane-nitrobenzene mixtures have a UCST of 19 °C (66 °F), so that these two substances are miscible in all proportions above 19 °C (66 °F) but not at lower temperatures.
For example, the system triethylamine-water has an LCST of 19 °C, so that these two substances are miscible in all proportions below 19 °C but not at higher temperatures. [ 1 ] [ 2 ] The nicotine -water system has an LCST of 61 °C, and also a UCST of 210 °C at pressures high enough for liquid water to exist at that temperature.
Upload file; Special pages; Search. Search. Appearance. ... Download as PDF; Printable version; In other projects ... Solvent miscibility table
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This allows the approximation of Helmholtz free energy, which is the natural form of free energy from the Flory–Huggins lattice theory, to Gibbs free energy. ^ In fact, two of the sites adjacent to a polymer segment are occupied by other polymer segments since it is part of a chain ; and one more, making three, for branching sites, but only ...
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension. A common form of spontaneous phase separation is termed spinodal decomposition; it is described by the Cahn–Hilliard equation.