Search results
Results from the WOW.Com Content Network
The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.
Finally, if a generator period longer than 2 128 is required, the generator can be extended with an array of sub-generators. One is chosen (in rotation) to be added to the main generator's output, and every time the main generator's state reaches zero, the sub-generators are cycled in a pattern which provides a period equal to 2 to the power of ...
This table specifies the input permutation on a 64-bit block. The meaning is as follows: the first bit of the output is taken from the 58th bit of the input; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input.
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
The Steinhaus–Johnson–Trotter algorithm follows this structure: the sequence of permutations it generates consists of ()! blocks of permutations, so that within each block the permutations agree on the ordering of the numbers from 1 to and differ only in the position of . The blocks themselves are ordered recursively, according to the ...
In computer science, bogosort [1] [2] (also known as permutation sort and stupid sort [3]) is a sorting algorithm based on the generate and test paradigm. The function successively generates permutations of its input until it finds one that is sorted. It is not considered useful for sorting, but may be used for educational purposes, to contrast ...
The six possible inversions of a 4-element permutation. The following sortable table shows the 24 permutations of four elements (in the column) with their place-based inversion sets (in the p-b column), inversion related vectors (in the , , and columns), and inversion numbers (in the # column).