enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  3. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The solution of the equations is a flow velocity. It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time. It is usually studied in three spatial dimensions and one time dimension ...

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism. Alternatively, in a more compact way, one can formulate the velocity field as follows:

  5. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    For stationary, creeping, incompressible flow, i.e. ⁠ D(ρu i) / Dt ⁠ ≈ 0, the Navier–Stokes equation simplifies to the Stokes equation, which by neglecting the bulk term is: =, where μ is the viscosity, u i is the velocity in the i direction, and p is the pressure. Assuming the viscous resisting force is linear with the velocity we ...

  6. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity: both magnitude and direction are needed to define it.

  7. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering.

  8. Darken's equations - Wikipedia

    en.wikipedia.org/wiki/Darken's_equations

    The above equation, in terms of the variable x, only takes into account diffusion, so the term for the motion of the markers must also be included, since the frame of reference is no longer moving with the marker particles. In the equation below, is the velocity of the markers.

  9. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    This equation is derived from the fact that the interaction between the two bodies is easily calculated along the contact angle, meaning the velocities of the objects can be calculated in one dimension by rotating the x and y axis to be parallel with the contact angle of the objects, and then rotated back to the original orientation to get the ...