enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Artificial Intelligence: A Modern Approach - Wikipedia

    en.wikipedia.org/wiki/Artificial_Intelligence:_A...

    AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An autoencoder consisting of an encoder and a decoder is a paradigm for deep learning architectures. An example is provided by Hinton and Salakhutdinov [ 24 ] where the encoder uses raw data (e.g., image) as input and produces feature or representation as output and the decoder uses the extracted feature from the encoder as input and ...

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    ROCm support [1] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Parallel execution (multi node) Actively developed BigDL: Jason Dai (Intel) 2016 Apache 2.0: Yes Apache Spark Scala Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning Center 2013 BSD: Yes Linux, macOS, Windows [3] C++

  6. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    [2] [3] It is a framework with wide support for deep learning algorithms. [4] Deeplearning4j includes implementations of the restricted Boltzmann machine , deep belief net , deep autoencoder, stacked denoising autoencoder and recursive neural tensor network , word2vec , doc2vec, and GloVe .

  7. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  8. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [35] [36] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  9. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...