Search results
Results from the WOW.Com Content Network
If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
Note that if φ is increased by a full rotation of 360 degrees, the arguments of sine and cosine only increase by 180 degrees. The resulting parameters are the opposite of the original values, (−a, −b, −c, −d); they represent the same rotation.
The axes of the original frame are denoted as x, y, z and the axes of the rotated frame as X, Y, Z.The geometrical definition (sometimes referred to as static) begins by defining the line of nodes (N) as the intersection of the planes xy and XY (it can also be defined as the common perpendicular to the axes z and Z and then written as the vector product N = z × Z).
The rotation-mode algorithm described above can rotate any vector (not only a unit vector aligned along the x axis) by an angle between −90° and +90°. Decisions on the direction of the rotation depend on being positive or negative. The vectoring-mode of operation requires a slight modification of the algorithm.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...
The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...