enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    Given the limited length of standard macroeconomic datasets relative to the vast number of parameters available, Bayesian methods have become an increasingly popular way of dealing with the problem of over-parameterization. As the ratio of variables to observations increases, the role of prior probabilities becomes increasingly important.

  3. Jeffreys prior - Wikipedia

    en.wikipedia.org/wiki/Jeffreys_prior

    In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys , [ 1 ] its density function is proportional to the square root of the determinant of the Fisher information matrix:

  4. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    This is because MAP estimates are point estimates, and depend on the arbitrary choice of reference measure, whereas Bayesian methods are characterized by the use of distributions to summarize data and draw inferences: thus, Bayesian methods tend to report the posterior mean or median instead, together with credible intervals.

  5. Credible interval - Wikipedia

    en.wikipedia.org/wiki/Credible_interval

    For the case of a single parameter and data that can be summarised in a single sufficient statistic, it can be shown that the credible interval and the confidence interval coincide if the unknown parameter is a location parameter (i.e. the forward probability function has the form (|) = ()), with a prior that is a uniform flat distribution; [6 ...

  6. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  7. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous ...

  8. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  9. g-prior - Wikipedia

    en.wikipedia.org/wiki/G-prior

    Consider a data set (,), …, (,), where the are Euclidean vectors and the are scalars.The multiple regression model is formulated as = +. where the are random errors. Zellner's g-prior for is a multivariate normal distribution with covariance matrix proportional to the inverse Fisher information matrix for , similar to a Jeffreys prior.