Search results
Results from the WOW.Com Content Network
The algorithm begins with a constrained Delaunay triangulation of the input vertices. At each step, the circumcenter of a poor-quality triangle is inserted into the triangulation with one exception: If the circumcenter lies on the opposite side of an input segment as the poor quality triangle, the midpoint of the segment is inserted. Moreover ...
In this algorithm, one recursively draws a line to split the vertices into two sets. The Delaunay triangulation is computed for each set, and then the two sets are merged along the splitting line. Using some clever tricks, the merge operation can be done in time O( n ) , so the total running time is O( n log n ) .
Mesh generation is deceptively difficult: it is easy for humans to see how to create a mesh of a given object, but difficult to program a computer to make good decisions for arbitrary input a priori. There is an infinite variety of geometry found in nature and man-made objects. Many mesh generation researchers were first users of meshes.
The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.
In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to predetermined quantified grids as in the ...
Each point on that plane can be written as + and can be translated by to "move" that point onto the plane that the triangle is on. To find u {\displaystyle u} and v {\displaystyle v} for a particular intersection, set the ray expression equal to the plane expression, and put the variables on one side and the constants on the other.
Lloyd's algorithm starts by an initial placement of some number k of point sites in the input domain. In mesh-smoothing applications, these would be the vertices of the mesh to be smoothed; in other applications they may be placed at random or by intersecting a uniform triangular mesh of the appropriate size with the input domain.
In this simple example, the steps (here the spatial step and timestep ) are constant along all the mesh, and the left and right mesh neighbors of the data value at are the values at and +, respectively. Generally in finite differences one can allow very simply for steps variable along the mesh, but all the original nodes should be preserved and ...