Search results
Results from the WOW.Com Content Network
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
A minimum spanning tree of a connected weighted graph is a connected subgraph, without cycles, for which the sum of the weights of all the edges in the subgraph is minimal. For a disconnected graph, a minimum spanning forest is composed of a minimum spanning tree for each connected component.
Minimum degree spanning tree; Minimum k-cut; Minimum k-spanning tree; Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in ...
The distributed minimum spanning tree (MST) problem involves the construction of a minimum spanning tree by a distributed algorithm, in a network where nodes communicate by message passing. It is radically different from the classical sequential problem, although the most basic approach resembles Borůvka's algorithm .
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
M. Haque, Md. R. Uddin, and Md. A. Kashem (2007) found a linear time algorithm that can find the minimum degree spanning tree of series-parallel graphs with small degrees. [2] G. Yao, D. Zhu, H. Li, and S. Ma (2008) found a polynomial time algorithm that can find the minimum degree spanning tree of directed acyclic graphs. [3]
The shortest-path tree from this point to all vertices in the graph is a minimum-diameter spanning tree of the graph. [2] The absolute 1-center problem was introduced long before the first study of the minimum-diameter spanning tree problem, [ 2 ] [ 3 ] and in a graph with n {\displaystyle n} vertices and m {\displaystyle m} edges it can be ...
Therefore, the k-minimum spanning tree must be formed by combining the optimal Steiner tree with enough of the zero-weight edges of the added trees to make the total tree size large enough. [ 2 ] Even for a graph whose edge weights belong to the set {1, 2, 3 }, testing whether the optimal solution value is less than a given threshold is NP ...