enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles.

  3. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.

  4. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    Euler also points out that O can be found by intersecting the perpendicular bisector of Aa with the angle bisector of ∠αAa, a construction that might be easier in practice. He also proposed the intersection of two planes: the symmetry plane of the angle ∠αAa (which passes through the center C of the sphere), and

  5. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  6. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    A line that is an angle bisector is equidistant from both of its lines when measuring by the perpendicular. At the point where two bisectors intersect, this point is perpendicularly equidistant from the final angle's forming lines (because they are the same distance from this angles opposite edge), and therefore lies on its angle bisector line.

  7. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    the perpendicular bisectors p a, p b, and p c of the sides (each being the length of a segment perpendicular to one side at its midpoint and reaching to one of the other sides); the lengths of line segments with an endpoint at an arbitrary point P in the plane (for example, the length of the segment from P to vertex A is denoted PA or AP );

  8. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Examples from plane geometry include: The set of points equidistant from two points is a perpendicular bisector to the line segment connecting the two points. [8] The set of points equidistant from two intersecting lines is the union of their two angle bisectors. All conic sections are loci: [9]

  9. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.)