Search results
Results from the WOW.Com Content Network
DRAGON 3.05D, Reactor Cell Calculation System with Burnup nesc0784 DSNP, Program and Data Library System for Dynamic Simulation of Nuclear Power Plant nea-1683 ERANOS 2.3N, Modular code and data system for fast reactor neutronics analyses nea-1916 FINPSA TRAINING 2.2.0.1 -R-, a PSA model in consisting of event trees, fault trees, and cut sets
A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material. Two research MSRs operated in the United States in the mid-20th century.
Red: uranium-238, light green: plutonium-239, black: fission products. Intensity of blue color between the tiles indicates neutron density. A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem
Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission reactions are subcritical fission reactors.
For example, the RBMK reactors at the Ignalina Nuclear Power Plant in Lithuania were rated at 1500 MWe each, a very large size for the time and even for the early 21st century. For comparison, the EPR has a net electric nameplate capacity of 1600 MW (4500 MW thermal ) and is among the most powerful reactor types ever built.
A fission fragment reactor is a nuclear reactor that generates electricity by decelerating an ion beam of fission byproducts instead of using nuclear reactions to generate heat. By doing so, it bypasses the Carnot cycle and can achieve efficiencies of up to 90% instead of 40–45% attainable by efficient turbine-driven thermal reactors.
The molten mass of reactor core dripped under the reactor vessel and now is solidified in forms of stalactites, stalagmites, and lava flows; the best-known formation is the "Elephant's Foot", located under the bottom of the reactor in a Steam Distribution Corridor. [16] [17] The corium was formed in three phases.
A natural nuclear fission reactor is a uranium deposit where self-sustaining nuclear chain reactions occur. The idea of a nuclear reactor existing in situ within an ore body moderated by groundwater was briefly explored by Paul Kuroda in 1956. [ 1 ]