enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine-129 - Wikipedia

    en.wikipedia.org/wiki/Iodine-129

    129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.

  3. Discovery of nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_nuclear_fission

    The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay , but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power ...

  4. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...

  5. Decay heat - Wikipedia

    en.wikipedia.org/wiki/Decay_heat

    Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]

  6. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.

  7. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely."

  8. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Krypton-85, with a half-life 10.76 years, is formed by the fission process with a fission yield of about 0.3%. Only 20% of the fission products of mass 85 become 85 Kr itself; the rest passes through a short-lived nuclear isomer and then to stable 85 Rb. If irradiated reactor fuel is reprocessed, this radioactive krypton may be released into ...

  9. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    When a fissile atom undergoes nuclear fission, it breaks into two or more fission fragments. Also, several free neutrons, gamma rays, and neutrinos are emitted, and a large amount of energy is released. The sum of the rest masses of the fission fragments and ejected neutrons is less than the sum of the rest masses of the original atom and ...