Search results
Results from the WOW.Com Content Network
Random optimization (RO) is a family of numerical optimization methods that do not require the gradient of the optimization problem and RO can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods.
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
Any randomized algorithm may be interpreted as a randomized choice among deterministic algorithms, and thus as a mixed strategy for Alice. Similarly, a non-random algorithm may be thought of as a pure strategy for Alice. In any two-player zero-sum game, if one player chooses a mixed strategy, then the other player has an optimal pure strategy ...
Seidel (1991) gave an algorithm for low-dimensional linear programming that may be adapted to the LP-type problem framework. Seidel's algorithm takes as input the set S and a separate set X (initially empty) of elements known to belong to the optimal basis. It then considers the remaining elements one-by-one in a random order, performing ...
swarm algorithms; evolutionary algorithms. genetic algorithms by Holland (1975) [19] evolution strategies; cascade object optimization & modification algorithm (2016) [20] In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21]
In computer science and operations research, randomized rounding [1] is a widely used approach for designing and analyzing approximation algorithms. [2] [3]Many combinatorial optimization problems are computationally intractable to solve exactly (to optimality).
Although randomness had often been viewed as an obstacle and a nuisance for many centuries, in the 20th century computer scientists began to realize that the deliberate introduction of randomness into computations can be an effective tool for designing better algorithms. In some cases, such randomized algorithms even outperform the best ...
This can be done in different ways, even according to greedy algorithms. After elimination of one more constraint, the optimal solution is updated, and the corresponding optimal value is determined. As this procedure moves on, the user constructs an empirical “curve of values”, i.e. the curve representing the value achieved after the ...