Search results
Results from the WOW.Com Content Network
Mu-metal has several compositions. One such composition is approximately 77% nickel, 16% iron, 5% copper, and 2% chromium or molybdenum. [1] [2] More recently, mu-metal is considered to be ASTM A753 Alloy 4 and is composed of approximately 80% nickel, 5% molybdenum, small amounts of various other elements such as silicon, and 12~15% iron for ...
To model permeability in anisotropic media, a permeability tensor is needed. Pressure can be applied in three directions, and for each direction, permeability can be measured (via Darcy's law in 3D) in three directions, thus leading to a 3 by 3 tensor. The tensor is realised using a 3 by 3 matrix being both symmetric and positive definite (SPD ...
Permendur rods. Permendur is a cobalt-iron soft ferromagnetic alloy with equal parts of cobalt and iron which is notable for its high magnetic saturation level. [1] [2] Its saturation flux density of around 2.4 tesla is the highest of any commercially available metal.
Permeability is influenced by the spacing between the grains, which form distributed air gap; the less gap, the higher permeability and the less-soft saturation. Due to large difference of densities, even a small amount of binder, weight-wise, can significantly increase the volume and therefore intergrain spacing.
Different materials have different saturation levels. For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6–2.2 teslas (T), [4] whereas ferrites saturate at 0.2–0.5 T. [5] Some amorphous alloys saturate at 1.2–1.3 T. [6] Mu-metal saturates at around 0.8 T. [7] [8]
Below 912 °C (1,674 °F), iron has a body-centered cubic (bcc) crystal structure and is known as α-iron or ferrite.It is thermodynamically stable and a fairly soft metal. α-Fe can be subjected to pressures up to ca. 15 GPa before transforming into a high-pressure form termed ε-Fe discussed below.
Air and vacuum have high reluctance, while easily magnetized materials such as soft iron have low reluctance. The concentration of flux in low-reluctance materials forms strong temporary poles and causes mechanical forces that tend to move the materials towards regions of higher flux so it is always an attractive force (pull).
Permeation can occur through most materials including metals, ceramics and polymers. However, the permeability of metals is much lower than that of ceramics and polymers due to their crystal structure and porosity. Permeation is something that must be considered carefully in many polymer applications, due to their high permeability.