Search results
Results from the WOW.Com Content Network
The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.
The exponential function maps complex numbers z differing by a multiple of to the same complex number w. For any positive real number t , there is a unique real number x such that exp ( x ) = t {\displaystyle \exp(x)=t} .
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
For any complex number written in polar form (such as r e iθ), the phase factor is the complex exponential (e iθ), where the variable θ is the phase of a wave or other periodic function. The phase factor is a unit complex number, i.e. a complex number of absolute value 1. It is commonly used in quantum mechanics and optics.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
A modest extension of the version of de Moivre's formula given in this article can be used to find the n-th roots of a complex number for a non-zero integer n. (This is equivalent to raising to a power of 1 / n). If z is a complex number, written in polar form as = ( + ),
The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = = for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...