enow.com Web Search

  1. Ad

    related to: applied stochastic differential equations

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  3. Supersymmetric theory of stochastic dynamics - Wikipedia

    en.wikipedia.org/wiki/Supersymmetric_Theory_of...

    The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] who demonstrated that the application of the BRST gauge fixing procedure to Langevin SDEs, i.e., to SDEs with linear phase spaces, gradient flow vector fields, and additive noises, results in N=2 supersymmetric models.

  4. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin calculus is named after Paul Malliavin whose ideas led to a proof that Hörmander's condition implies the existence and smoothness of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. The calculus has been applied to stochastic ...

  5. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    A stochastic differential equation (SDE) is an equation in which the unknown quantity is a stochastic process and the equation involves some known stochastic processes, for example, the Wiener process in the case of diffusion equations. A stochastic partial differential equation (SPDE) is an equation that generalizes SDEs to include space-time ...

  6. Stochastic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_partial...

    Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. [1] [2]

  7. Backward stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Backward_stochastic...

    A backward stochastic differential equation (BSDE) is a stochastic differential equation with a terminal condition in which the solution is required to be adapted with respect to an underlying filtration. BSDEs naturally arise in various applications such as stochastic control, mathematical finance, and nonlinear Feynman-Kac formula. [1]

  8. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_method_(SDE)

    In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing ...

  9. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis (the extension of calculus to stochastic processes ) and of differential geometry .

  1. Ad

    related to: applied stochastic differential equations