Search results
Results from the WOW.Com Content Network
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In a diode model two diodes are connected back-to-back to make a PNP or NPN bipolar junction transistor (BJT) equivalent. This model is theoretical and qualitative. This model is theoretical and qualitative.
At the junction of two different types of the same semiconductor (e.g., p-n junction) the bands vary continuously since the dopants are sparsely distributed and only perturb the system. At the junction of two different semiconductors there is a sharp shift in band energies from one material to the other; the band alignment at the junction (e.g ...
In normal operation the base-emitter junction does indeed form a diode, but in most cases it is undesirable for the base-collector junction to behave as a diode. If a sufficient forward bias is placed on this junction it will form a parasitic diode structure, and current will flow from base to collector.
The characteristic curve (curved line), representing the current I through the diode for any given voltage across the diode V D, is an exponential curve. The load line (diagonal line) , representing the relationship between current and voltage due to Kirchhoff's voltage law applied to the resistor and voltage source, is
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
To solve this problem, a selenium diode was connected around the base–emitter to slow it down. The two-level logic was similar to the programmable logic array (PLA) that would come on the market many years later. Nearly any static logic function that yielded one output could be achieved with one transistor and a handful of cheap diodes.
The laser diode rate equations model the electrical and optical performance of a laser diode. This system of ordinary differential equations relates the number or density of photons and charge carriers in the device to the injection current and to device and material parameters such as carrier lifetime, photon lifetime, and the optical gain.