Search results
Results from the WOW.Com Content Network
Java class name« extends parentclass»« implements interfaces» { members} interface name« extends parentinterfaces» {members } package name; members: PHP namespace name; members: Objective-C @interface name« : parentclass» [8] «< protocols >» { instance_fields} method_and_property_declarations @end @implementation name method ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Eclipse Deeplearning4j is a programming library written in Java for the Java virtual machine (JVM). [ 2 ] [ 3 ] It is a framework with wide support for deep learning algorithms. [ 4 ] Deeplearning4j includes implementations of the restricted Boltzmann machine , deep belief net , deep autoencoder, stacked denoising autoencoder and recursive ...
Classification, object detection 2005 [33] MIT Computer Science and Artificial Intelligence Laboratory: PASCAL VOC Dataset Images in 20 categories and localization bounding boxes. Labeling, bounding box included 500,000 Images, text Classification, object detection 2010 [34] [35] M. Everingham et al. CIFAR-10 Dataset
The java.lang.Class [2] class is the basis of more advanced introspection. For instance, if it is desirable to determine the actual class of an object (rather than whether it is a member of a particular class), Object.getClass() and Class.getName() can be used:
Object-oriented programming uses objects, but not all of the associated techniques and structures are supported directly in languages that claim to support OOP. The features listed below are common among languages considered to be strongly class- and object-oriented (or multi-paradigm with OOP support), with notable exceptions mentioned.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.
An object must be explicitly created based on a class and an object thus created is considered to be an instance of that class. An object is similar to a structure, with the addition of method pointers, member access control, and an implicit data member which locates instances of the class (i.e., objects of the class) in the class hierarchy ...