enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...

  3. Ziegler–Nichols method - Wikipedia

    en.wikipedia.org/wiki/Ziegler–Nichols_method

    The "P" (proportional) gain, is then increased (from zero) until it reaches the ultimate gain, at which the output of the control loop has stable and consistent oscillations. K u {\displaystyle K_{u}} and the oscillation period T u {\displaystyle T_{u}} are then used to set the P, I, and D gains depending on the type of controller used and ...

  4. Setpoint (control system) - Wikipedia

    en.wikipedia.org/wiki/Setpoint_(control_system)

    An everyday example is the cruise control on a road vehicle; where external influences such as gradients cause speed changes (PV), and the driver also alters the desired set speed (SP). The automatic control algorithm restores the actual speed to the desired speed in the optimum way, without delay or overshoot, by altering the power output of ...

  5. Proportional control - Wikipedia

    en.wikipedia.org/wiki/Proportional_control

    Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV).

  6. Integral windup - Wikipedia

    en.wikipedia.org/wiki/Integral_windup

    Within modern distributed control systems and programmable logic controllers, it is much easier to prevent integral windup by either limiting the controller output, limiting the integral to produce feasible output, [5] or by using external reset feedback, which is a means of feeding back the selected output to the integral circuit of all ...

  7. Piping and instrumentation diagram - Wikipedia

    en.wikipedia.org/wiki/Piping_and_instrumentation...

    Example of a single industrial control loop; showing continuously modulated control of process flow. Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows:

  8. PID - Wikipedia

    en.wikipedia.org/wiki/PID

    PID controller (proportional-integral-derivative controller), a control concept used in automation; Piping and instrumentation diagram (P&ID), a diagram in the process industry which shows the piping of the process flow etc. Principal ideal domain, an algebraic structure; Process identifier, a number used by many operating systems to identify a ...

  9. Inverted pendulum - Wikipedia

    en.wikipedia.org/wiki/Inverted_pendulum

    The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms (PID controllers, state-space representation, neural networks, fuzzy control, genetic algorithms, etc.). Variations on this problem include multiple links, allowing the motion of the cart to be commanded ...