Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
This can be generalized to restrict the range of values in the dataset between any arbitrary points and , using for example ′ = + (). Note that some other ratios, such as the variance-to-mean ratio ( σ 2 μ ) {\textstyle \left({\frac {\sigma ^{2}}{\mu }}\right)} , are also done for normalization, but are not nondimensional: the units do not ...
Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ 2, the sample mean ¯ is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ 2 /n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion.
As a concrete example, suppose we observe student test scores X under teaching strategies A and B, and each student has either a "high" or "low" level of mathematical knowledge before the two teaching strategies are implemented. However, we do not know which students are in the "high" category and which are in the "low" category.
A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on the unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the z-score, the chi square statistic and Student's t-value.
Otsu's method for finding a threshold for separation between two modes relies on minimizing the quantity + where n i is the number of data points in the i th subpopulation, σ i 2 is the variance of the i th subpopulation, m is the total size of the sample and σ 2 is the sample variance.