Search results
Results from the WOW.Com Content Network
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
predecessor(x), which returns the largest element in S strictly smaller than x; successor(x), which returns the smallest element in S strictly greater than x; In addition, data structures which solve the dynamic version of the problem also support these operations: insert(x), which adds x to the set S; delete(x), which removes x from the set S
In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array.
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic. Like the related quicksort sorting algorithm, it was developed by Tony Hoare , and thus is also known as Hoare's selection algorithm . [ 1 ]
We assume in the next points that the root element is at the first level, i.e., 0. Example of Min-max heap. Each node in a min-max heap has a data member (usually called key) whose value is used to determine the order of the node in the min-max heap. The root element is the smallest element in the min-max heap.
That is, if there is a sorting algorithm which can sort in O(S) time per key, where S is some function of n and word size, [22] then one can use the given procedure to create a priority queue where pulling the highest-priority element is O(1) time, and inserting new elements (and deleting elements) is O(S) time.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.