enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...

  3. Moving heat source model for thin plates - Wikipedia

    en.wikipedia.org/wiki/Moving_heat_source_model...

    In the 1930s metallurgists Albert Portevin and D. Seferian attempted to experimentally determine heat transfer characteristics in welding. [1] They correlated the effects of several factors—material properties, welding process, and part dimensions—on temperature distribution, by performing oxyacetylene (gas) and covered electrode (arc) welds on plates and bars of various profiles, and ...

  4. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number is frequently used as the nondimensional time in studying transient heat conduction in solids. A second parameter, the Biot number arises in nondimensionalization when convective boundary conditions are applied to the heat equation. [2]

  5. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the time-varying and non-spatially-uniform temperature field within the material body.

  6. Finite volume method for three-dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Solution of equation: 1. For solving the one- dimensional convection- diffusion problem we have to express equation (8) at all the grid nodes. 2. Now obtained set of algebraic equations is then solved to obtain the distribution of the transported property .

  7. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    The heat transfer at an interface is considered a transient heat flow. To analyze this problem, the Biot number is important to understand how the system behaves. The Biot number is determined by: Bi = h L k {\displaystyle {\textit {Bi}}={\frac {hL}{k}}} The heat transfer coefficient h {\displaystyle h} , is introduced in this formula, and is ...

  8. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    In the above equation, four terms represents transience, convection, diffusion and a source term respectively, where T is the temperature in particular case of heat transfer otherwise it is the variable of interest; t is time; c is the specific heat; u is velocity; ε is porosity that is the ratio of liquid volume to the total volume; ρ is ...

  9. General equation of heat transfer - Wikipedia

    en.wikipedia.org/wiki/General_equation_of_heat...

    For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...