Search results
Results from the WOW.Com Content Network
Sequence coverage (or depth) is the number of unique reads that include a given nucleotide in the reconstructed sequence. [1] [2] Deep sequencing refers to the general concept of aiming for high number of unique reads of each region of a sequence. [3] Physical coverage, the cumulative length of reads or read pairs expressed as a multiple of ...
Sequencing technologies vary in the length of reads produced. Reads of length 20-40 base pairs (bp) are referred to as ultra-short. [2] Typical sequencers produce read lengths in the range of 100-500 bp. [3] However, Pacific Biosciences platforms produce read lengths of approximately 1500 bp. [4] Read length is a factor which can affect the results of biological studies. [5]
Therefore, the total number of reads generated in a single experiment is typically normalized by converting counts to fragments, reads, or counts per million mapped reads (FPM, RPM, or CPM). The difference between RPM and FPM was historically derived during the evolution from single-end sequencing of fragments to paired-end sequencing.
There are two common methods in which to construct a DNA molecular-weight size marker. [3] One such method employs the technique of partial ligation. [3] DNA ligation is the process by which linear DNA pieces are connected to each other via covalent bonds; more specifically, these bonds are phosphodiester bonds. [4]
In genetics, the gene density of an organism's genome is the ratio of the number of genes per number of base pairs, usually written in terms of a million base pairs, or megabase (Mb). The human genome has a gene density of 11-15 genes/Mb, while the genome of the C. elegans roundworm is estimated to have 200.
A nuclear run-on assay is conducted to identify the genes that are being transcribed at a certain time point. Approximately one million cell nuclei are isolated and incubated with labeled nucleotides, and genes in the process of being transcribed are detected by hybridization of extracted RNA to gene specific probes on a blot. [1]
The minimal genome corresponds to small genome sizes, as bacterial genome size correlates with the number of protein-coding genes, typically one gene per kilobase. [1] Mycoplasma genitalium , with a 580 kb genome and 482 protein-coding genes, is a key model for minimal genomes.
In 2012, with cameras operating at more than 10 MHz A/D conversion rates and available optics, fluidics and enzymatics, throughput can be multiples of 1 million nucleotides/second, corresponding roughly to 1 human genome equivalent at 1x coverage per hour per instrument, and 1 human genome re-sequenced (at approx. 30x) per day per instrument ...