enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    The area formula is intuitive: start with a circle of radius (so its area is ) and stretch it by a factor / to make an ellipse. This scales the area by the same factor: π b 2 ( a / b ) = π a b . {\displaystyle \pi b^{2}(a/b)=\pi ab.} [ 18 ] However, using the same approach for the circumference would be fallacious – compare the integrals

  3. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  4. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...

  6. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    Roundness = ⁠ Perimeter 2 / 4 π × Area ⁠. This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = ⁠ 4 π × Area / Perimeter 2 ⁠, which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.

  7. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Plane section of an ellipsoid (see example) Given: Ellipsoid ⁠ x 2 / a 2 ⁠ + ⁠ y 2 / b 2 ⁠ + ⁠ z 2 / c 2 ⁠ = 1 and the plane with equation n x x + n y y + n z z = d, which have an ellipse in common. Wanted: Three vectors f 0 (center) and f 1, f 2 (conjugate vectors), such that the ellipse can be represented by the parametric equation

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    The dot planimeter is physical device for estimating the area of shapes based on the same principle. It consists of a square grid of dots, printed on a transparent sheet; the area of a shape can be estimated as the product of the number of dots in the shape with the area of a grid square. [8]