Search results
Results from the WOW.Com Content Network
NIR absorption bands are typically 10–100 times weaker than the corresponding fundamental mid-IR absorption band.) [4] The lower absorption allows NIR radiation to penetrate much further into a sample than mid infrared radiation. Near-infrared spectroscopy is, therefore, not a particularly sensitive technique, but it can be very useful in ...
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
The near-infrared (NIR) window (also known as optical window or therapeutic window) defines the range of wavelengths from 650 to 1350 nanometre (nm) where light has its maximum depth of penetration in tissue. [1] Within the NIR window, scattering is the most dominant light-tissue interaction, and therefore the propagating light becomes diffused ...
NDVI is functionally and linearly equivalent to the ratio NIR / (NIR+VIS), which ranges from 0 to 1 and is thus never negative nor limitless in range. [6] But the most important concept in the understanding of the NDVI algebraic formula is that, despite its name, it is a transformation of a spectral ratio (NIR/VIS), and it has no functional ...
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
As an example, raw FCS data and its autocorrelation for freely diffusing Rhodamine 6G are shown in the figure to the right. The plot on top shows the fluorescent intensity versus time. The intensity fluctuates as Rhodamine 6G moves in and out of the focal volume.
Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not.
Example of a linear molecule. N atoms in a molecule have 3N degrees of freedom which constitute translations, rotations, and vibrations.For non-linear molecules, there are 3 degrees of freedom for translational (motion along the x, y, and z directions) and 3 degrees of freedom for rotational motion (rotations in R x, R y, and R z directions) for each atom.