Search results
Results from the WOW.Com Content Network
Ray tracing of a beam of light passing through a medium with changing refractive index.The ray is advanced by a small amount, and then the direction is re-calculated. Ray tracing works by assuming that the particle or wave can be modeled as a large number of very narrow beams (), and that there exists some distance, possibly very small, over which such a ray is locally straight.
The ray tracing technique is based on two reference planes, called the input and output planes, each perpendicular to the optical axis of the system. At any point along the optical train an optical axis is defined corresponding to a central ray; that central ray is propagated to define the optical axis further in the optical train which need ...
The principal ray or chief ray (sometimes known as the b ray) in an optical system is the meridional ray that starts at an edge of an object and passes through the center of the aperture stop. [ 5 ] [ 8 ] [ 7 ] The distance between the chief ray (or an extension of it for a virtual image) and the optical axis at an image location defines the ...
Ray tracing is a method for calculating the path of waves or particles through a system. The method is practiced in two distinct forms: The method is practiced in two distinct forms: Ray tracing (physics) , which is used for analyzing optical and other systems
While wave-based models rely on the principles of Maxwell's equations, particle models use ray optics and Monte Carlo methods to simulate light paths. Monte Carlo Ray Tracing: A stochastic method used in light transport simulations to compute global illumination. This method leverages randomness to estimate solutions to the rendering equation ...
In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens). [1] [2] A paraxial ray is a ray that makes a small angle (θ) to the optical axis of the system, and lies close to the axis throughout the system. [1]
Other approximations to scattering by a single sphere include: Debye series, ray tracing (geometrical optics), ray tracing including the effects of interference between rays, Airy theory, Rayleigh scattering, diffraction approximation. There are many phenomena related to light scattering by spherical particles such as resonances, surface waves ...
This recursive ray tracing of reflective colored spheres on a white surface demonstrates the effects of shallow depth of field, "area" light sources, and diffuse interreflection. (c. 2008) In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.