Search results
Results from the WOW.Com Content Network
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
Implements the mathematical modulo operator. The returned result is always of the same sign as the modulus or nul, and its absolute value is lower than the absolute value of the modulus . However, this template returns 0 if the modulus is nul (this template should never return a division by zero error).
Implements the mathematical modulo operator. The returned result is always of the same sign as the modulus or nul, and its absolute value is lower than the absolute value of the modulus . However, this template returns 0 if the modulus is nul (this template should never return a division by zero error).
While such acceptance is subjective, and often depends on individual coding habits, the following are common examples: the use of 0 and 1 as initial or incremental values in a for loop, such as for (int i = 0; i < max; i += 1) the use of 2 to check whether a number is even or odd, as in isEven = (x % 2 == 0), where % is the modulo operator
Any set of m integers, no two of which are congruent modulo m, is called a complete residue system modulo m. The least residue system is a complete residue system, and a complete residue system is simply a set containing precisely one representative of each residue class modulo m. [4] For example, the least residue system modulo 4 is {0, 1, 2, 3}.
If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a primitive root modulo 2 p k. [14] Finding primitive roots modulo p is also equivalent to finding the roots of the (p − 1)st cyclotomic polynomial modulo p.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.