Search results
Results from the WOW.Com Content Network
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
The conjugacy definition would also allow a mirror image of the structure, but this is not needed, the structure itself is achiral. For example, if a symmetry group contains a 3-fold axis of rotation, it contains rotations in two opposite directions. (The structure is chiral for 11 pairs of space groups with a screw axis.)
Instead, both effects can also occur when the propagation direction of the electromagnetic wave together with the structure of an (achiral) material form a chiral experimental arrangement. [10] [11] This case, where the mutual arrangement of achiral components forms a chiral (experimental) arrangement, is known as extrinsic chirality. [12] [13]
The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All nontrivial torus knots are chiral. The Alexander polynomial cannot distinguish a knot from its mirror image, but the Jones polynomial can in some cases; if V k ( q ) ≠ V k ( q −1 ), then the knot is chiral, however the converse is not true.
Any planar pattern that does not have a line of mirror symmetry is 2d-chiral, and examples include flat spirals and letters such as S, G, P. In contrast to 3d-chiral objects, the perceived sense of twist of 2d-chiral patterns is reversed for opposite directions of observation.
The full tetrahedral group T d with fundamental domain. T d, *332, [3,3] or 4 3m, of order 24 – achiral or full tetrahedral symmetry, also known as the (2,3,3) triangle group. This group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S 4 (4) axes.
A theory that is asymmetric with respect to chiralities is called a chiral theory, while a non-chiral (i.e., parity-symmetric) theory is sometimes called a vector theory. Many pieces of the Standard Model of physics are non-chiral, which is traceable to anomaly cancellation in chiral theories.
Homochirality is a uniformity of chirality, or handedness.Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral.