enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  3. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis. This can be extended to algebraic conjugation: the roots of a polynomial with rational coefficients are conjugate (that is, invariant) under the action of the Galois group of the polynomial. However, this symmetry can rarely be ...

  5. Square-root sum problem - Wikipedia

    en.wikipedia.org/wiki/Square-root_sum_problem

    SRS can be solved in polynomial time in the Real RAM model. [3] However, its run-time complexity in the Turing machine model is open, as of 1997. [1] The main difficulty is that, in order to solve the problem, the square-roots should be computed to a high accuracy, which may require a large number of bits.

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The coefficients of a polynomial and its roots are related by Vieta's formulas. Some polynomials, such as x 2 + 1, do not have any roots among the real numbers. If, however, the set of accepted solutions is expanded to the complex numbers, every non-constant polynomial has at least one root; this is the fundamental theorem of algebra.

  7. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    For the quadratic polynomial, the only ways to rearrange two roots are to either leave them be or to transpose them, so solving a quadratic polynomial is simple. To find the roots ⁠ α {\displaystyle \alpha } ⁠ and ⁠ β {\displaystyle \beta } ⁠ , consider their sum and difference:

  8. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.

  9. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  1. Related searches sum of roots a polynomial definition geometry calculator soup answers free

    polynomial root functionpolynomial root bounds
    polynomial roots propertiesgeometric properties of roots
    root separation polynomials