enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free product - Wikipedia

    en.wikipedia.org/wiki/Free_product

    In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a ...

  3. Normal form for free groups and free product of groups

    en.wikipedia.org/wiki/Normal_form_for_free...

    In mathematics, particularly in combinatorial group theory, a normal form for a free group over a set of generators or for a free product of groups is a representation of an element by a simpler element, the element being either in the free group or free products of group. In case of free group these simpler elements are reduced words and in ...

  4. Kurosh subgroup theorem - Wikipedia

    en.wikipedia.org/wiki/Kurosh_subgroup_theorem

    Since the edge groups of Z are trivial, it follows that H is equal to the free product of the vertex groups of Z and the free group F(X) which is the fundamental group (in the standard topological sense) of the underlying graph Z of Z. This implies the conclusion of the Kurosh subgroup theorem.

  5. Category of groups - Wikipedia

    en.wikipedia.org/wiki/Category_of_groups

    The category-theoretical product in Grp is just the direct product of groups while the category-theoretical coproduct in Grp is the free product of groups. The zero objects in Grp are the trivial groups (consisting of just an identity element).

  6. Product of groups - Wikipedia

    en.wikipedia.org/wiki/Product_of_groups

    Product of group subsets; wreath product; free product; central product This page was last edited on 29 December 2020, at 00:45 (UTC). Text is available under the ...

  7. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    Two free groups F S and F T are isomorphic if and only if S and T have the same cardinality. This cardinality is called the rank of the free group F. Thus for every cardinal number k, there is, up to isomorphism, exactly one free group of rank k. A free group of finite rank n > 1 has an exponential growth rate of order 2n − 1. A few other ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    To see this, given a group G, consider the free group F G on G. By the universal property of free groups, there exists a unique group homomorphism φ : F G → G whose restriction to G is the identity map. Let K be the kernel of this homomorphism. Then K is normal in F G, therefore is equal to its normal closure, so G | K = F G /K.