enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  3. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .

  4. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    The normal probability plot is a graphical technique to identify substantive departures from normality.This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures.

  5. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [1] [2] It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean.

  6. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The accompanying plot of skewness as a function of variance and mean shows that maximum variance (1/4) is coupled with zero skewness and the symmetry condition (μ = 1/2), and that maximum skewness (positive or negative infinity) occurs when the mean is located at one end or the other, so that the "mass" of the probability distribution is ...

  7. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    The first is the square of the skewness: β 1 = γ 1 where γ 1 is the skewness, or third standardized moment. The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3.

  8. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population.

  9. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.