Search results
Results from the WOW.Com Content Network
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
[4] [6] The first three of these define the primitive Pythagorean triples (the ones in which the two sides and hypotenuse have no common factor), derive the standard formula for generating all primitive Pythagorean triples, compute the inradius of Pythagorean triangles, and construct all triangles with sides of length at most 100. [6]
A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.
There are infinitely many such triples, [19] and methods for generating such triples have been studied in many cultures, beginning with the Babylonians [20] and later ancient Greek, Chinese, and Indian mathematicians. [1] Mathematically, the definition of a Pythagorean triple is a set of three integers (a, b, c) that satisfy the equation [21] a ...
Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples ( a , b , c ) {\displaystyle (a,b,c)} with hypotenuse c {\displaystyle c} which are primitive (the sides having no common factor ) can be generated by
If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.