Search results
Results from the WOW.Com Content Network
Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable universe. [8] Huge-LQG (2012–2013) 4,000,000,000 [9] [10] [11] Decoupling of 73 quasars. Largest-known large quasar group and the first structure found to exceed 3 billion light-years. "The Giant Arc" (2021) 3,300,000,000 [12] Located 9.2 billion ...
The Hercules–Corona Borealis Great Wall (HCB) [1] [5] or simply the Great Wall [6] is a galaxy filament that is the largest known structure in the observable universe, measuring approximately 10 billion light-years in length (the observable universe is about 93 billion light-years in diameter).
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters.These massive, thread-like formations can commonly reach 50 to 80 megaparsecs (160 to 260 megalight-years)—with the largest found to date being the Hercules-Corona Borealis Great Wall at around 3 gigaparsecs (9.8 Gly) in length—and form the boundaries between voids ...
Size comparison of the event horizons of the black holes of TON 618 and Phoenix A.The orbit of Neptune (white oval) is included for comparison. As a quasar, TON 618 is believed to be the active galactic nucleus at the center of a galaxy, the engine of which is a supermassive black hole feeding on intensely hot gas and matter in an accretion disc.
On January 11, 2013, another large quasar group, the Huge-LQG, was discovered, which was measured to be four billion light-years across, the largest known structure in the universe at that time. [61] In November 2013, astronomers discovered the Hercules–Corona Borealis Great Wall, [62] [63] an even bigger structure twice as large as the former.
Astronomers have discovered what they believe is the biggest known batch of planet-making ingredients swirling around a young star. The diameter of this colossal disk is roughly 3,300 times the ...
The highest-redshift quasar known (as of August 2024) is UHZ1, with a redshift of approximately 10.1, [48] which corresponds to a comoving distance of approximately 31.7 billion light-years from Earth (these distances are much larger than the distance light could travel in the universe's 13.8-billion-year history because the universe is expanding).
The universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across. [114] Comparison of the contents of the universe today to 380,000 years after the Big Bang, as measured with 5 year WMAP data (from 2008). [115] Due to rounding, the sum of these numbers is not 100%.