Search results
Results from the WOW.Com Content Network
An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x: r n = x . {\displaystyle r^{n}=x.} Every positive real number x has a single positive n th root, called the principal n th root , which is written x n {\displaystyle {\sqrt[{n}]{x}}} .
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
Let z 0 be a root of a holomorphic function f, and let n be the least positive integer such that the n th derivative of f evaluated at z 0 differs from zero. Then the power series of f about z 0 begins with the n th term, and f is said to have a root of multiplicity (or “order”) n. If n = 1, the root is called a simple root. [4]
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the full range 0..510 of possible sums, the differences using only the first 256 entries in range 0..255) or 2 9 −1=511 entries (using for negative differences the technique of 2-complements and 9-bit masking, which avoids testing the sign of ...
In a wider sense, it also includes exponentiation, extraction of roots, and logarithm. [2] The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός (arithmos), meaning ' number ', and ἀριθμητική τέχνη (arithmetike tekhne), meaning ' the art of counting '. [3]
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.