Search results
Results from the WOW.Com Content Network
TensorFlow includes an “eager execution” mode, which means that operations are evaluated immediately as opposed to being added to a computational graph which is executed later. [35] Code executed eagerly can be examined step-by step-through a debugger, since data is augmented at each line of code rather than later in a computational graph. [35]
Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage. However, different resources such as time and space complexity cannot be compared directly, so which of two algorithms is considered to be more efficient ...
The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM) coined the term "foundation model" in August 2021 [16] to mean "any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks". [17]
At the end of the search, these references can be used to recover the optimal path. If these references are being kept then it can be important that the same node doesn't appear in the priority queue more than once (each entry corresponding to a different path to the node, and each with a different cost).
Do all of the agents construct their own plans separately, or are the plans constructed centrally for all agents? The simplest possible planning problem, known as the Classical Planning Problem, is determined by: a unique known initial state, durationless actions, deterministic actions, which can be taken only one at a time, and a single agent.
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
With the completion of the HRA, the human contribution to failure can then be assessed in comparison with the results of the overall reliability analysis. This can be completed by inserting the HEPs into the full system’s fault event tree, which allows human factors to be considered within the context of the full system. 5.