Search results
Results from the WOW.Com Content Network
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
A conditional statement may refer to: A conditional formula in logic and mathematics, which can be interpreted as: Material conditional; Strict conditional; Variably strict conditional; Relevance conditional; A conditional sentence in natural language, including: Indicative conditional; Counterfactual conditional; Biscuit conditional
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
A conditional sentence expressing an implication (also called a factual conditional sentence) essentially states that if one fact holds, then so does another. (If the sentence is not a declarative sentence, then the consequence may be expressed as an order or a question rather than a statement.)
expression 1, expression 2: Expressions with values of any type. If the condition is evaluated to true, the expression 1 will be evaluated. If the condition is evaluated to false, the expression 2 will be evaluated. It should be read as: "If condition is true, assign the value of expression 1 to result.
[citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of alternatives" in the continuous case. [5] This result is given by Grimmett and Welsh [6] as the partition theorem, a name that they also give to the related law of total expectation.
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...