Search results
Results from the WOW.Com Content Network
Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs.
A classic example of this process is the quinine sulfate fluorescence, which can be quenched by the use of various halide salts. [citation needed] The excited molecule can de-excite by increasing the thermal energy of the surrounding solvated ions. Several natural molecules perform a fast internal conversion.
Fluorescence microscopy relies upon fluorescent compounds, or fluorophores, in order to image biological systems.Since fluorescence and phosphorescence are competitive methods of relaxation, a fluorophore that undergoes intersystem crossing to the triplet excited state no longer fluoresces and instead remains in the triplet excited state, which has a relatively long lifetime, before ...
The changes between these levels are called "transitions" and are plotted on the Jablonski diagram. Radiative transitions involve either the absorption or emission of a photon. As mentioned above, these transitions are denoted with solid arrows with their tails at the initial energy level and their tips at the final energy level.
Jablonski diagram of FRET with typical timescales indicated. The black dashed line indicates a virtual photon.. Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). [1]
Other fluorescent materials were discovered to have much longer decay times, because some of the atoms would change their spin to a triplet state, thus would glow brightly with fluorescence under excitation but produce a dimmer afterglow for a short time after the excitation was removed, which became labeled "phosphorescence" or "triplet ...
Electrons change energy states by either resonantly gaining energy from absorption of a photon or losing energy by emitting photons. In chemistry-related disciplines, one often distinguishes between fluorescence and phosphorescence. The former is typically a fast process, yet some amount of the original energy is dissipated so that re-emitted ...
A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...