Search results
Results from the WOW.Com Content Network
A complex number can also be defined by its geometric polar coordinates: the radius is called the absolute value of the complex number, while the angle from the positive real axis is called the argument of the complex number. The complex numbers of absolute value one form the unit circle.
The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces.
The Euclidean norm of a complex number is the absolute value (also called the modulus) of it, if the complex plane is identified with the Euclidean plane. This identification of the complex number x + i y {\displaystyle x+iy} as a vector in the Euclidean plane, makes the quantity x 2 + y 2 {\textstyle {\sqrt {x^{2}+y^{2}}}} (as first suggested ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
For any complex number written in polar form (such as r e iθ), the phase factor is the complex exponential (e iθ), where the variable θ is the phase of a wave or other periodic function. The phase factor is a unit complex number, i.e. a complex number of absolute value 1. It is commonly used in quantum mechanics and optics.
In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955 [1] [2]) or complex number (proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965 [4] [5] [6]).